Neutral pion production with respect to reaction plane at Vs_{NN}=200 GeV Au+Au collisions at RHIC-PHENIX

Yoki Aramaki, Center for Nuclear Study, University of Tokyo for the PHENIX Collaboration

Motivation

Property of the produced medium in Au+Au collisions

What is the origin of jet quenching?

> It is considered to be Eloss due to soft gluon bremsstrahlung.

How dense is the medium?

> We can learn about it by studying parton energy loss

Can we verify a gluon coherence effect to the analogy of LPM in QED?

- > Study path length dependence of radiative energy loss
- \triangleright Prediction for the radiative E_{loss} model (for example in the GLV model)

> R_{AA} measured at different angles with respect to the reaction plane $R_{\Delta\Delta}(p_T, centrality, \Delta\phi)$

Analysis status & New Results

Beam Side View

➤ At high p_T Its dependence seems to be smaller

> Out-of plane R_{AA} is nearly flat with centrality at low p_T

> In- and out-of-plane converge at high-p_T (~10GeV/c)

Outlook

- **PHENIX New Paper!** > Pure geometry plays a larger role in energy loss than previously thought (arXiv0903.4886 [nucl-ex])
- \succ Reaction plane dependent R_{AA} gives some control over the path length of the parton in the medium
- > Reaction plane dependent R_{AA} provides a more stringent test on energy loss models